Convex Preserving Scattered Data
نویسندگان
چکیده
We use bivariate C 1 cubic splines to deal with convexity preserving scattered data interpolation problem. Using a necessary and suucient condition on Bernstein-B ezier polynomials, we set the convexity preserving interpolation problem into a quadratically constraint quadratic programming problem. We show the existence of convexity preserving interpolatory surfaces under certain conditions on the data. That is, under certain conditions on the data, there always exists a convexity preservation C 1 cubic spline interpolation if the tri-angulation is reened suuciently many times. We then replace the quadratical constrains by three linear constrains and formulate the problem into linearly constraint quadratic programming problems in order to be able to solve it easily. Certainly, the existence of convexity preserving interpolatory surfaces is equivalent to the feasibility of the linear constrains. We present a numerical experiment to test which of these three linear constraints performs the best. x1. Introduction In computer aided geometric design, we often encounter to design an interpolation surface with convexity or concavity property. Typically, given a set of scattered data 's may be obtained from a convex function), we need to nd a smooth surface S (e. and s is convex. Many researchers have derived necessary and suucient conditions to ensure the convexity of Bernstein-B ezier polynomials over triangular domain and have studied Supported by the National Science Foundation under grant DMS-9870187.
منابع مشابه
Convexity - Preserving Scattered Data Interpolation 33 2 . 3 Convexity Conditions
This study deals with constructing a convexity-preserving bivariate C interpolants to scattered data whenever the original data are convex. Sufficient conditions on lower bound of Bézier points are derived in order to ensure that surfaces comprising cubic Bézier triangular patches are always convex and satisfy C continuity conditions. Initial gradients at the data sites are estimated and then m...
متن کاملConvexity-preserving Interpolation of Scattered Data
We describe a detailed computational procedure which, given data values at arbitrarily distributed points in the plane, determines if the data are convex and, if so, constructs a smooth convex surface that interpolates the data. The method consists of constructing a triangulation of the nodes (data abscissae) for which the triangle-based piecewise linear interpolant is convex, computing a set o...
متن کاملConvexity preserving splines over triangulations
A general method is given for constructing sets of sufficient linear conditions that ensure convexity of a polynomial in Bernstein–Bézier form on a triangle. Using the linear conditions, computational methods based on macro-element spline spaces are developed to construct convexity preserving splines over triangulations that interpolate or approximate given scattered data.
متن کاملA linear approach to shape preserving spline approximation
This report deals with approximation of a given scattered univariate or bivariate data set that possesses certain shape properties, such as convexity, monotonicity, and/or range restrictions. The data are approximated for instance by tensor-product B-splines preserving the shape characteristics present in the data. Shape preservation of the spline approximant is obtained by additional linear co...
متن کاملRange restricted positivity-preserving scattered data interpolation
The construction of a range restricted bivariate C ( or G ) interpolant to scattered data is considered in which the interpolant is positive everywhere if the original data are positive. This study is motivated by earlier work in which sufficient conditions are derived on Bézier points in order to ensure that surfaces comprising cubic Bézier triangular patches are always positive and satisfy C ...
متن کامل